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Site nearest in energy within this range,

Matrix element for hopping to this range:

 Resonance condition 𝐽𝑅 > Δ𝑅 satisfied only if

o Is there a possible resonance within a distance R of site i ?

Anderson localization
o Single-particle localization
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 Can view delocalization as a decay of state |𝑖〉 into a continuum

Condition for the surrounding states to serve as 

an effective bath: 
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Anderson localization

o Fermi golden-rule rate for decay
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But, Anderson insulators in solids are not insulators! 

 Coupling to delocalized phonons  Variable-range 

hopping



Conductivity in Anderson “insulators” (T>0)

𝜔 = 𝛿𝐸

𝛿𝐸

Phonon assisted hopping (Mott):

Closed system with interactions (no phonon bath) :

Question: Can collective excitations, e.g. particle-hole, in interacting 

system play the role of phonons? 

Answer: No! for sufficiently strong disorder collective excitations are also 

localized 

 discrete local spectrum  fail to serve as a bath

 Many-body localization (MBL)
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Basko, Aleiner, Altshuler (2005)



 Revisit Electron phonon problem with configurational disorder in 1d.

Question

o Can phonons always delocalize electrons?

All phonons are localized except at 𝜔 = 0. 

Can we have Variable-range hopping  in this case?

Relevant for fermions coupled to the excitations of a condensate with 1d disorder.



Outline

o Variable-range hopping.

o Why basic (perturbative) variable-range hopping process fails in 1d

with configurational disorder?  

o Refined analysis.

 High order perturbation theory in el-ph coupling.

 Non-perturbative: Polaron calculation.

o Delocalization via arbitrary high-order phonon process as 𝑇 → 0.

 Modified “variable-range hopping rate”.



Phonon assisted hopping in disordered electronic system

o Temperature-dependent (variable) hopping range  𝑅𝑀 ≃ 𝜉
Δ𝜉

𝑇
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o Phonon-assisted hopping rate of 

localized electrons
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Fermi golden rule (FGR) 

for one-phonon absorption

 (Mott) Variable-range hopping (VRH) rate,  
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𝑑 dimension

Electron draws an `optimal’ energy  Δ𝑀 ≃ Δ𝜉
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from phonon bath.

 Dimension d ≥ 3, all low-frequency modes are extended

o Saddle point approximation

𝜔 = Δ𝑅



Phonon localization in 1D random chain

Random harmonic chain

Disorder in masses and springs 

o Phonons are localized at all non-zero frequency in 1D

 Phonon localization length

ℓ𝜔 ≃ ℓ0

𝜔0

𝜔

𝛼 2 ≥ 𝛼 > 1 (Weak  Strong disorder)

S. John et al. (1983), V. Gurarie et al. (2008)

o Low-energy phonon DOS 𝐷 𝜔 ≃ 1/𝑐, constant 

‘One-phonon’ bath has discrete spectra

Level spacing 

𝛿𝜔 ≃ 1/ℓ𝜔𝐷(𝜔) ∼
𝜔

𝜔0

𝛼



 How does phonon localization in a random harmonic solid affect VRH 

transport ?

 Is there a possibility of many-body localization (MBL) of coupled electron-

phonon system? 

Questions

Localized particles coupled to random harmonic chain 



Absence of variable-range hopping in 1D random harmonic 

chain? 

o Fermi golden-rule rate is non-zero only if
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 The level spacing is larger at low temperature (𝑇 → 0) and could be 

made larger over the entire VRH temperature regime

 Fermi golden-rule rate is zero

Many-body localization of electron-phonon system ?



Wait! What happens to higher-order phonon processes? 

Level spacing for 𝑛-th order phonon process 

 Level spacing relevant for higher-order phonon processes decreases 

very rapidly with number of phonons absorbed (emitted).

𝛿𝜔
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Need to compare higher-order rates with relevant level spacings for 

many-phonon process.



Model

ℋ = ℋ𝑒𝑙 + ℋ𝑝ℎ + ℋ𝑒𝑙−𝑝ℎ

o ℋ𝑒𝑙 =  𝑙 𝜖𝑙𝑐𝑙
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o Electron-phonon coupling
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𝑒−|𝑥−𝑥𝜇|/2ℓ𝜔 , 𝜆𝜔 ≃ 𝑐/𝜔𝜇 , phonon wavelength



Hopping rate: Weak el-ph coupling

Rate,

1/𝜏𝑙 ∼ −𝐼𝑚Σ𝑙𝑙(𝜖𝑙 + 𝑖0+)

Saddle point approximations 

o First order (one-phonon) rate (usual VRH rate)
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Rate is also zero at second order

May need to go to very high-order phonon process Strong-coupling approach

Small-polaron hopping



Small–polaron in random harmonic chain

o Polaron transformation

 ℋ = 𝑒𝑆ℋ𝑒−𝑆

𝜒 𝑥 = 𝑒
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o Polaron operator

 𝑐 𝑥 = 𝑒𝑆 𝑐 𝑥 𝑒−𝑆 = 𝑐 𝑥 𝜒(𝑥) , 

Contains arbitrary high-order

phonon process

o Polaron hopping rate, Fermi golden rule 
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Polaron hopping rate

o Fermi golden-rule rate
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 𝑆 𝜔 constitutes the effective bath DOS. 

Check the validity of Fermi golden rule rate. 
 Compare 1/𝜏𝑙 with the level spacing of 𝑆 𝜔 .



Rate for n-phonon process

Expand the golden-rule rate in order of number (𝑛) of phonons. 
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 Contribution from n-phonon absorption (emission) processes.

o n-phonon assisted hopping rate (𝑛 ≫ 1)
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 Compare the rate with level spacing of 𝑛-phonon bath

Modified variable-range hopping rate
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 Order of the process diverges as 𝑇 → 0.

Modified variable-range hopping rate 
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Singular and highly suppressed pre-exponential factor 



Higher dimension

 What happens for strong disorder in 2d?

Two-dimension:

o For weak disorder, the phonon localization length,  ℓ𝜔 ∼ ℓ0𝑒
𝜔0
𝜔

2

.
S. John et al. (1983)

 one-phonon level spacing decreases very rapidly with energy.

 usual VRH rate through one-phonon process is non-zero. 

Three-dimension:

All low-frequency modes are extended.

 usual VRH rate. 



o The absence of usual VRH transport via one- and a few-phonon processes 

due to discrete nature of the phonon bath for localized particles coupled to 

1d random harmonic chain.

o Very high-order process involving large number of phonons do eventually 

thermalize Anderson insulator.

Order of the process diverges as 𝑇 → 0.

o Very slow hopping rate due to highly suppressed pre-exponential factor of 

VRH rate. 

Conclusions


